Chemistry of Sponges. 18.¹ 12-Desacetylfuroscalar-16-one, a New Sesterterpene from a *Cacospongia* sp.

Richard C. Cambie, *,[†] Peter S. Rutledge,[†] Xiao-Shuang Yang,[†] and Patricia R. Bergquist[‡]

Department of Chemistry and School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand

Received April 27, 1998

A new sesterterpene 12-O-desacetylfuroscalar-16-one (1) has been isolated from the sponge Cacospongia sp., and its structure was determined by spectroscopic examination.

Sponges of the genus Cacospongia (order Dictyoceratida, family Thorectidae) are an important source of scalarane sesterterpenes, some of which are biologically active.² In a continuation of our studies on sponges of the order Dictyoceratida we have examined the constituents of an unnamed Cacospongia species collected at Little Barrier Island, New Zealand. Extraction of the freeze-dried sponge with methanol and chromatography of the dichloromethanesoluble portion of the extract on Si gel gave a new sesterterpene, 12-O-desacetylfuroscalar-16-one (1) (0.01%), and the known sesterterpene, scalarolide^{3,4} (0.004%), which was identified by comparison of spectral data with that reported in the literature.

12-O-Desacetylfuroscalar-16-one, a colorless solid, was shown to have the molecular formula C₂₅H₃₆O₃ by highresolution desorption electron impact mass measurements (HRDEIMS), indicating eight degrees of unsaturation. The IR spectrum showed absorptions indicative of a hydroxyl group (3360 cm⁻¹) and an α , β -unsaturated carbonyl group (1652 cm⁻¹), while the ¹H NMR spectrum (δ 6.63, d, J =2.0 Hz; 7.33, d, J = 2.0 Hz) suggested the presence of a disubstituted furan ring. The ¹³C NMR spectrum (Table 1) showed five sp² carbon signals (δ 106.6, 120.5, 142.6, 173.4, and 194.5) accounting for three degrees of unsaturation, and, thus, the compound possessed five rings. The ¹H NMR spectrum (Table 1) indicated the presence of five methyl groups that gave rise to three-proton singlets at $\delta 0.82, \ 0.85, \ 0.86, \ 0.98, \ and \ 1.27$ and that indicated a scalarane sesterterpene. This finding was supported by peaks in the mass spectrum at m/z 191, 137, and 123, characteristic of scalarane derivatives⁵ (Figure 1). Both the ¹H and ¹³C NMR spectra were similar to those of 12-O-desacetylfuroscalarol (2).6,7 The ¹³C NMR spectrum, however, indicated that one of the hydroxyl groups of 2 was replaced by a keto group (δ 194.5). The downfield shift of one of the furanyl carbons (δ 173.4) implied that it was part of the α,β -unsaturated keto system. This, together with a UV maximum at 260 nm, showed that the keto group had to be linked in a position β to the furan ring,⁶ thereby localizing its position at C-16. The methyl signal at low field (δ 1.27) could be assigned to the C-23 methyl group due to the deshielding effect of the furan ring, while a key HMBC correlation between this signal and that at δ 173.4 indicated that the furan was fused to ring D at C-17 and C-18. In the ¹H NMR spectrum an ABM coupling system composed of one-proton signals at δ 2.58, 2.43, and

Figure 1.

2.40 assigned to the H-15eq, H-15ax, and H-14 protons respectively, together with HMBC cross peaks between H-14 and C-8, C-13, C-16, C-18, C-21, and C-23 and between H-15 and C-8, C-13, C-14, C-16, and C-17, were in agreement with the partial structure for the D and E rings shown in **1**. Signals at δ 4.43 (dd, 1H) and 70.8 (d) in the ¹H and ¹³C NMR spectra, respectively, indicated that the hydroxy group was secondary, and a coupling of the H-23 methyl signal to the carbon signal at δ 70.8 provided evidence that the hydroxyl group was at C-12. In the ¹H-¹H COSY spectrum cross peaks due to couplings of H-12 with H-11ax and H-11eq were observed. Their small coupling constants (J = 2.6, 2.8 Hz) suggested that H-12 was equatorial so that the 12-hydroxyl group was axial, that is, was in an α -position.

Further support for structure 1 was obtained from oxidation with Jones' reagent, which afforded a diketone (3), mp 217-219 °C, with properties identical to those recorded for the oxidation product of 12-O-desacetylfuroscalarol.6

Experimental Section

General Methods. ¹H and ¹³C NMR spectra (COSY, HMQC, HMBC) were recorded on a Bruker DRX-400 spectrometer using CDCl₃ as solvent and TMS as internal standard. Multiplicities of ¹³C NMR peaks were determined from

10.1021/np980165+ CCC: \$15.00 © 1998 American Chemical Society and American Society of Pharmacognosy Published on Web 10/09/1998

[‡] School of Biological Sciences.

Table 1. ¹H NMR, ¹³C NMR, COSY, and HMBC Data for 1 (in CDCl₃)

position	δ_{C}	$\delta_{ m H}$ (mult, J in Hz)	COSY	HMBC (H to C)
1	39.6 t	0.84 (m), 1.66 (m)	H-2ax, H-2eq	C-2, -3, -5, -9, -10
2	18.5 t	1.44 (m), 1.63 (m)	H-1ax, H-2eq	C-3
3	41.9 t	1.13 (m), 1.37 (m)	-	C-2, -4, -5
4	29.7 s			
5	56.5 d	0.99 (dd, 14.0, 2.2)	H-6ax, H-6eq	C-7, -9, -10, -20, -22
6	18.0 t	1.41 (m), 1.59 (m)	H-5, H-7ax, H-7eq	C-4, -6, -10, -19
7	41.0 t	1.07 (m)	H-6ax, H-6eq	C-5, -6, -8, -9
		1.74 (dt, 12.0, 2.4)		C-14
8	37.0 s			
9	51.5 d	1.54 (dd, 12.0, 4.0)	H-11ax, H-11eq	C-8, -10, -11
10	37.6 s			
11	23.9 t	1.80 (m), 1.84 (m)	H-9, H-12	C-8, -9, -10, -12, -13
12	70.8 d	4.43 (dd, 2.8, 2.6)	H-11ax, H-11eq	
13	43.3 s			
14	49.4 d	2.40 (dd, 13.6, 2.8)	H-15ax, H-15eq	C-8, -13, -15, -16, -18, -21, -23
15	34.7 t	2.43 (dd, 16.4, 13.6)	H-14	C -8, -13, -14, -16
		2.58 (dd, 16.4, 2.8)		C-16, -17
16	194.5 s			
17	120.5 s			
18	173.4 s			
19	33.3 q	0.85 (s)		C-3, -4, -5, -20
20	21.3 q	0.82 (s)		C-3, -4, -5, -19
21	16.7 q	0.98 (s)		C-7, -8, -9, -14
22	16.2 q	0.86 (s)		C-1, -5, -9, -10
23	20.4 q	1.27 (s)		C-12, -13, -14, -18
24	106.6 d	6.63 (d, 2.0)	H-25	C-17, -18, -25
25	142.6 d	7.33 (d, 2.0)	H-24	C-17, -18, -24

DEPT data. Flash chromatography was carried out on Merck Si gel 60, preparative TLC on 1-mm plates of Merck Si gel 60 PF_{254 + 366}, and analytical TLC on Merck aluminum-backed precoated plates of Si gel 60 F₂₅₄, 0.2 mm. Mass spectra were recorded on a VG-70SE mass spectrometer; IR, on a Perkin-Elmer 1000 FT-IR spectrometer; and UV spectra, on a Shimadzu UV-2101 UV-vis spectrometer. Optical rotations were measured with a Perkin-Elmer 241 polarimeter for solutions in CHCl₃ or CH₂Cl₂.

Collection, Extraction, and Isolation. The sponge Cacospongia sp. was collected at Little Barrier Island, New Zealand, in 1990, and kept freeze-dried until used. A voucher specimen is retained in the School of Biological Science, University of Auckland, P. R. B. ref. no. 5.11). The sponge (50.2 g) was extracted with MeOH (350 mL \times 3), and the combined extracts were concentrated to give a residue that was extracted with CH_2Cl_2 (100 mL \times 3). Solvent was removed from the combined extracts to yield a dark oil (2.1 g) that was flash chromatographed. The column was eluted with solvents of increasing polarity from hexane to EtOAc. Fractions 27-33, eluted with hexane-EtOAc (2:1), contained sesterterpenes as shown by a ¹H NMR survey. The solid mixture was washed with Me₂CO-hexane (1:1), and the insoluble portion was purified by preparative TLC (CH₂Cl₂-EtOAc, 23:2), R_f 0.55, and crystallized from Me₂CO to yield 12-O-desacetylfuroscalar-16-one (1) (6 mg). The soluble portion was purified by column chromatography. Elution with CH_2Cl_2 -EtOAc (23:2) gave scalarolide, $R_f 0.58$, which crystallized from hexane-CH₂Cl₂ as needles (2.2 mg), mp 292-294 °C dec (lit.³ > 300 °C dec); $[\alpha]^{20}_{D}$ +25.9°(c 0.15) (lit.³ + 24.9°);

correct IR, ¹H and ¹³C NMR³; HRMS [M]⁺ 386.2815, calcd for C25H38O3 386.2821.

12-O-Desacetylfuroscalar-16-one (1): colorless needles, mp 287–288 °C, $[\alpha]^{20}_{D}$ +44.8°(*c* 0.13, CH₂Cl₂); UV (CH₂Cl₂) λ_{max} 260 nm (log ϵ 3.95); IR (film) ν_{max} 3360, 2916, 1652, 1446, 1386, 1233, 1026, 758, 724 cm⁻¹; ¹H and ¹³C NMR data, see Table 1; DEIMS *m*/*z* (rel int) 384 (68), 366 (4), 351 (12), 233 (12), 215 (16), 191 (27), 175 (10), 161 (18), 149 (100), 148 (62), 137 (8), 123 (26), 109 (12), 95 (17), 81 (21), 69 (29), 55 (27), 40 (52); HRMS [M]⁺ 384.2670, calcd for C₂₅H₃₆O₃ 384.2664.

12-Desacetylfuroscalar-12,16-dione (3). The hydroxyketone (1) (4 mg) in Me₂CO (0.5 mL) was oxidized with Jones' reagent for 30 min at room temperature. The mixture was poured onto ice, extracted with ether, and the extract worked up to give the dione, mp 215–216 °C (lit.⁶ 218–220°); $[\alpha]^{20}_{D}$ + $120.2^{\circ}(c\ 0.01)$, (lit.⁶ + 124.5°); correct UV and IR spectra.⁶

References and Notes

- (1) Part 17: J. Nat. Prod. 1995, 58, 940-942.
- (2) Faulkner, D. J. Nat. Prod. Rep. 1997, 14, 259-302 and previous reviews of this series.
- (3) Walker, R. P.; Thompson, J. E.; Faulkner, D. J. J. Org. Chem. 1980, 45, 4976-4979.
- (4) Bergquist, P. R.; Cambie, R. C.; Kernan, M. R. Biochem. Syst. Ecol. 1990, 18, 349-357.
- (5) Ragoussis, V.; Liapis, M.; Ragoussis, N. J. Chem. Soc., Perkin Trans. 1 1990, 2545-2551
- (6) Cafieri, F.; De Napoli, L.; Fattorusso, E.; Santacroce, C.; Sica, D. Gazz. Chim. Ital. **1977**, 107, 71–74. Cimino, G.; Cafieri, F.; De Napoli, L.; Fattorusso, E. Tetrahedron Lett.
- (7)1978, 2041-2044.

NP980165+